
● Glaucoma is among the leading causes of irreversible blindness in the world
○ Over 50% of glaucoma cases go undetected due to lack of access to eye 

specialists/ophthalmologists for timely screening1

● We have developed multiple Convolutional Neural Network (CNN) architectures to:
○ Automate detection of glaucoma from Retinal Nerve Fiber Layer (RNFL) probability map 

images derived from OCT cube/volume scans
○ Evaluate eyes of glaucoma patients (G), suspects (NG-S), and healthy controls (NG-H)
○ Provide accuracy results, class activation map visualizations, and post-hoc analysis of false 

positives and false negatives
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● The report above was generated for 322 eyes of 322 patients and 415 eyes of 415 healthy 
controls (NG-H) from wide-field OCT cube scans (Topcon).2

● Patients were early glaucoma or glaucoma suspects (mean deviation on 24-2 visual field 
better than -6 dB).

● Senior author (DCH) rated each patient eye on a scale between 0 (non-glaucomatous, NG,
0-49) and 100 (glaucomatous, G, 51-100) using report above.

● The RNFL probability maps (red rectangle) supplied the only input for all CNN models.
● The 192 G eyes and 545 NG eyes (415 NG-H and 130 NG-S) were divided into:
○ Training images: 395 (215 NG-H, 70 NG-S, and 110 G)
○ Validation images: 145 (100 NG-H, 18 NG-S, and 27 G)
○ Testing images: 197 (100 NG-H, 41 NG-S, and 56 G)

● Automated glaucoma detection was conducted with two CNN model types:
○ CNN-A-Type: without any natural image pretraining, (i.e., trained only on OCT data),

followed by downstream classifiers (Random Forest or Dense Layers)
○ CNN-B-Type: pretrained on ImageNet3, followed by a non-parametric Random Forest

classifier

False Negatives: Expert Grader Decision Based on Additional Information

Category #2: Expert Grader Decision Based on Additional Informaion (2 out of 5 FN) 
FN)
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● All models exhibited high accuracy performance and high AUC scores (see ROC curve, below left) 
● CNN A-1 had highest accuracy with 4 false positives (FP) and 5 false negatives (FN)
● Correlation between human expert rating probabilities and model probabilities was high, R value of

0.87 (see scatterplot, below right)

Post-Hoc Analysis
• In 4/5 FNs, patterns resembled 1 or more of those found in Healthy Controls/True Positives (e.g.

blood vessel artifacts appear at similar regions as arcuates in patients; angle of arcuates more acute
than that of blood vessels – can be easily confused)

• In all 5 cases, expert grading (EG) was made using additional information from full report (examples
of additional information below)

Post-Hoc Analysis:
• For 3rd FP, the edges of artifacts due to poor scan (left) were mistaken for an arcuate

(see Grad-CAM4 at center)
• For last FP, artifact due to anatomical variation was recognized by EG but not by MG

(right)
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For the FN boxed in red, additional information from RNFL thickness
plot and cpRNFL thickness plot used by EG to make assessment;
machine did not have this additional information (only had RNFL
probability map)

Post-Hoc Analysis:
• For 1st FP, rating by Expert Grader indicated uncertainty (40%). This eye could be

actually a true positive based on other information (family history of ocular
hypertension; see image at left below).

• For the 2nd FP, machine may also be correct, as this is the fellow eye of a Juvenile
Open Angle Glaucoma patient (see image at right below)

• Developed purely OCT-trained (Type A) as well as transfer-learning based (Type B)
CNN architectures; all achieved high accuracy and high AUC-score detection of
glaucoma from OCT probability map images.

• Post-hoc analysis of false positives and false negatives, aided by Grad-CAM4

visualizations, shows strong correlation between human expert and machine
performance; FP and FN may be reduced with multimodal input data

• This work is a step towards enabling automated eye disease detection especially in
situations when access to vision experts may not be possible.

Schematic of convolutional, max pooling, and 
activation (ReLU = rectified linear unit) layers that
make up the 3 blocks of the OCT-trained CNN-A types.


