Putting Pipeline Implementation-related Variation Into Perspective For Functional Connectomics Xinhui Li¹, Lei Ai¹, Steve Giavasis¹, Hecheng Jin¹, Jon Clucas¹, Alexandre Franco^{2,1}, Eric Feczko³, Joshua Vogelstein⁴, Cameron Craddock⁵, Ting Xu¹, Oscar Esteban⁶, Russell Poldrack⁷, Damien Fair³, Theodore Satterthwaite⁸, Michael Milham^{1,2} ¹Child Mind Institute, New York, NY, ²Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, ³University of Minnesota, Minneapolis, MN, ⁴Johns Hopkins University, Baltimore, MD, ⁵The University of Texas at Austin, Austin, TX, ⁶University Hospital of Lausanne, Philadelphia, PA #### Introduction A basic set of preprocessing steps have emerged in the functional connectomics literature and are now widely implemented across pipeline packages. However, marked variation exists in how specific algorithms implement these steps, as well as how pipelines link them together. Alarmingly, recent studies have found that when analyzing the same data, differences in implementation are a substantial and undesirable source of variation (e.g., Bowring et al., 2019). Here, inspired by the growing consensus that increasing the fMRI data quantity per participant can overcome suboptimal test-retest reliability, we examine the impact of data quantity on crosspipeline reliability. To accomplish this goal, we leverage the Configurable Pipeline for the Analysis of Connectomes (CPAC) to enable generation of harmonized configurations for each of three minimal processing pipelines in a common framework, which can then be used to analyze the origins of differences among pipelines. #### Methods Dataset. The HNU Sample (N=30) from the Consortium for Reliability and Reproducibility (CoRR), including ten 10-min single-band resting state fMRI per subject (TR=2000ms). Pipelines. Our cross-pipeline comparisons focused on the differing minimal preprocessing pipelines on functional connectivity estimates. To accomplish this, we extended the range of configurable options in CPAC pipeline to include those necessary to replicate the key minimal preprocessing steps in each of the 3 established preprocessing pipelines (fMRIPrep, the ABCD Pipeline, and the Connectome Computation System) (see Table 1 for comparison of pipeline steps used to guide harmonization). Prior to cross-pipeline comparisons, we first validated each CPAC harmonized configuration with the package it was based on (target crosspipeline reliability: > 0.9). Evaluation Metrics. Reproducibility was quantified using a multifaceted assessment strategy, including: 1) matrix-wise Pearson spatial correlation, 2) edge-wise intraclass correlation coefficient (ICC), 3) image-wise intraclass correlation coefficient (I2C2), and 4) discriminability (matrix-level index of reliability). Table 1. Summarizing minimal processing pipeline differences # Comparing Minimal Processing Pipelines | 1 | Pearson Correlation | ICC | | | _ | |------------|------------------------------------|--|--|--|---| | Pipeline B | | Schaefer Atlas: 200 600 1000 | 200 | 600 | 1000 | | fMRIPrep | | | 0.827
———
1 | 0.746
———
1 | 0.685
———
1 | | CCS | | | 0.804
———
1 | 0.675
———
1 | 0.602
———
1 | | CCS | | | 0.770
———
1 | 0.665
———
1 | 0.608
———
1 | | fMRIPrep | | | 0.732
———
1 | 0.592
———
0.998 | 0.512
———
0.995 | | ABCD | | | 0.707
———
0.998 | 0.551
———
0.990 | 0.473
———
0.985 | | CCS | | | 0.642
———
0.995 | 0.520
———
0.989 | 0.454
———
0.981 | | | fMRIPrep CCS CCS fMRIPrep ABCD | Pipeline B fMRIPrep CCS CCS fMRIPrep ABCD | Pipeline B Schaefer Atlas: 200 600 1000 CCS CCS fMRIPrep ABCD | Schaefer Atlas: 200 600 1000 0.827 1 1 1 1 1 1 1 1 1 | Pipeline B Schaefer Atlas: 200 600 1000 | Figure 1. Comparing minimal preprocessing across a sample of fMRI pipeline # packages (CPAC:Default, fMRIPrep, ABCD and CCS). Figure 3. Visualizing harmonized minimal preprocessing outputs. A. Anatomical images in template space. B. Functional images in template space. **Evaluating Harmonized Pipelines** Figure 2. Evaluating cross-pipeline reliability (matrix-wise, edge-wise) for functional connectivity matrices generated using CPAC harmonized pipelines against the originals (fMRIPrep, ABCD, CCS). ## - Evaluating Scan Duration Impact Figure 4. Evaluating the scan duration impact. We varied the scan duration (10/30/50 min) by concatenating the data from different sessions and measured the cross-pipeline reliability. Results using a 200 parcellation unit atlas are reported here (findings are consistent at 600 and 1000). ### Conclusion It is common and justifiable to compare the impact of different processing steps on the same datasets from the same subjects. The present work clearly demonstrates that such comparisons can give skewed perspectives. As robust as our findings were regarding alarmingly suboptimal crosspipeline reliability were when applied to the same data, from the same subjects, they were dwarfed by session-related variation when shorter scan durations (e.g., 10 minutes) were included. Our findings emphasize the need for both – more dense sampling per subject, and an increased focus on harmonizing pipeline implementation - to improve reproducibility across studies. ### References Bowring A, Maumet C, Nichols TE. Exploring the impact of analysis software on task fMRI results. Hum Brain Mapp. 2019;40(11):3362-3384. doi:10.1002/hbm.24603 Craddock C, Sikka S, Cheung B, et al. Towards automated analysis of connectomes: The configurable pipeline for the analysis of connectomes (c-pac). Front Neuroinform. 2013;42:10-3389. https://www.frontiersin.org/10.3389/conf.fninf.2013.09.00042/event_abstract_ Esteban O, Markiewicz CJ, Blair RW, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019;16(1):111-116. doi:10.1038/s41592-018-0235-4 Satterthwaite T, et al. XCP Imaging Pipeline — xcpEngine 1.0 documentation. Accessed February 1, 2021. https://xcpengine.readthedocs.io/ Sturgeon, D., Perrone, A., Earl, E., & Snider, K. DCAN_Labs/abcd-hcp-pipeline. doi: 10.5281/zenodo.2587209 Xu T, Yang Z, Jiang L, Xing XX, Zuo XN. A Connectome Computation System for discovery science of brain. Sci Bull. 2015; 60(1):86-95. Shou H, Eloyan A, Lee S, et al. Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2). Cogn Affect Behav Neurosci. 2013;13(4):714-724. doi:10.3758/s13415-013-0196-0