publications

2024

  1. Moving beyond processing-and analysis-related variation in resting-state functional brain imaging
    Xinhui Li, Nathalia Bianchini Esper, Lei Ai, Steve Giavasis, Hecheng Jin, Eric Feczko, Ting Xu, Jon Clucas, Alexandre Franco, Anibal Sólon Heinsfeld, Azeez Adebimpe, Joshua Vogelstein, Chao-Gan Yan, Oscar Esteban, Russell Poldrack, Cameron Craddock, Damien Fair, Theodore Satterthwaite, Gregory Kiar, and Michael Milham
    Nature Human Behaviour 2024
  2. A Method for Multimodal IVA Fusion Within a MISA Unified Model Reveals Markers of Age, Sex, Cognition, and Schizophrenia in Large Neuroimaging Studies
    Rogers F. Silva, Eswar Damaraju, Xinhui Li, Peter Kochunov, Judith M. Ford, Daniel H. Mathalon, Jessica A. Turner, Theo G. M. Erp, Tulay Adali, and Vince D. Calhoun
    Human Brain Mapping 2024
  3. A brainwide risk score for psychiatric disorder evaluated in a large adolescent population reveals increased divergence among higher-risk groups relative to control participants
    Weizheng Yan, Godfrey D Pearlson, Zening Fu, Xinhui Li, Armin Iraji, Jiayu Chen, Jing Sui, Nora D Volkow, and Vince D Calhoun
    Biological Psychiatry 2024
  4. Schizosymphony: From Schizophrenia Brainwaves To Narrative Soundscapes
    Hyunkyung Shin, Xinhui Li, Zening Fu, and Henrik Coler
    The 29th International Conference on Auditory Display (ICAD 2024) 2024
  5. Multimodal subspace independent vector analysis effectively captures the latent relationships between brain structure and function
    Xinhui Li, Peter Kochunov, Tulay Adali, Rogers Silva, and Vince Calhoun
    bioRxiv 2024
  6. Brain functional network connectivity interpolation characterizes neuropsychiatric continuum and heterogeneity
    Xinhui Li, Eloy Geenjaar, Zening Fu, Godfrey Pearlson, and Vince Calhoun
    bioRxiv 2024

2023

  1. Predictive Sparse Manifold Transform
    Yujia Xie, Xinhui Li, and Vince Calhoun
    Workshop on High-dimensional Learning Dynamics (HLD), International Conference on Machine Learning (ICML) 2023
  2. Learning pipeline-invariant representation for robust brain phenotype prediction
    Xinhui Li, Alex Fedorov, Mrinal Mathur, Anees Abrol, Gregory Kiar, Sergey Plis, and Vince Calhoun
    Data-centric Machine Learning Research (DMLR) Workshop, International Conference on Machine Learning (ICML) 2023
  3. Multimodal subspace independent vector analysis better captures hidden relationships in multimodal neuroimaging data
    Xinhui Li, Tulay Adali, Rogers Silva, and Vince Calhoun
    In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) 2023
  4. Evaluating trade-offs in IVA of multimodal neuroimaging using cross-platform multidataset independent subspace analysis
    Xinhui Li, Daniel Khosravinezhad, Vince Calhoun, and Rogers Silva
    In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) 2023
  5. Align with the NMIND consortium for better neuroimaging
    Gregory Kiar, Jon Clucas, Eric Feczko, Mathias Goncalves, Dorota Jarecka, Christopher Markiewicz, Yaroslav Halchenko, Robert Hermosillo, Xinhui Li, Oscar Miranda-Dominguez, Satrajit Ghosh, Russell Poldrack, Theodore Satterthwaite, Michael Milham, and Damien Fair
    Nature Human Behaviour 2023

2022

  1. Pipeline-Invariant Representation Learning for Neuroimaging
    Xinhui Li, Alex Fedorov, Mrinal Mathur, Anees Abrol, Gregory Kiar, Sergey Plis, and Vince Calhoun
    Machine Learning for Health (ML4H) 2022
  2. Mind the gap: functional network connectivity interpolation between schizophrenia patients and controls using a variational autoencoder
    Xinhui Li, Eloy Geenjaar, Zening Fu, Sergey Plis, and Vince Calhoun
    In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2022
  3. The Connected Brain: OHBM Brain-Art SIG 2022
    OHBM Brain-Art SIG, Livio Tarchi, Mirco Marino, Robin Gutzen, Lena Oestreich, and Zoltan Nagy
    2022

2021

  1. U-net model for brain extraction: Trained on humans for transfer to non-human primates
    Xindi Wang, Xinhui Li, Jae Wook Cho, Brian E. Russ, Nanditha Rajamani, Alisa Omelchenko, Lei Ai, Annachiara Korchmaros, Stephen Sawiak, R. Austin Benn, Pamela Garcia-Saldivar, Zheng Wang, Ned H. Kalin, Charles E. Schroeder, R. Cameron Craddock, Andrew S. Fox, Alan C. Evans, Adam Messinger, Michael P. Milham, and Ting Xu
    NeuroImage 2021
  2. Strategies to Improve Convolutional Neural Network Generalizability and Reference Standards for Glaucoma Detection From OCT Scans
    Kaveri A. Thakoor, Xinhui Li, Emmanouil Tsamis, Zane Z. Zemborain, Carlos Gustavo De Moraes, Paul Sajda, and Donald C. Hood
    Translational Vision Science & Technology 2021
  3. Toward Automatic Segmentation for Non-human Primates.
    Xinhui Li, Xindi Wang, Kathleen Mantell, Estefania Casillo Cruz, Michael Milham, Alex Opitz, and Ting Xu
    In 2nd International Workshop on Non-invasive Brain Stimulation 2021

2020

  1. Evaluating the transferability of deep learning models that distinguish glaucomatous from non-glaucomatous OCT circumpapillary disc scans.
    Xinhui Li, Emmanouil Tsamis, Kaveri A. Thakoor, Zane Z. Zemborain, Carlos Gustavo De Moraes, and Donald C. Hood
    In Investigative Ophthalmology & Visual Science 2020

2019

  1. Enhancing the Accuracy of Glaucoma Detection from OCT Probability Maps using Convolutional Neural Networks
    Kaveri A. Thakoor, Xinhui Li, Emmanouil Tsamis, Paul Sajda, and Donald C. Hood
    In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019